Ty "

DOCUMENT RESUME

BD 099 973 EA 006 590

AUTHOR Nunamaker, J. P., Jr.; And Others |

TITLE Processing Systems Optimization Through Automatic
Design and Reorganization of Program Modules.

INSTITOTION Puvrdue Univ., Lafayette, Ind. Herman C, Krannert
Graduate School of Industrial Administration,

REPORT NO Pap=~391

PUB DATE Jan 73

NOTE 47p.

EDRS PRICE MP-$0,75 HC-$1.85 PLUS POSTAGE

DESCRIPTORS Bibliographies; Computer Oriented Progranms;

Computers; Computer Storage Devices; Cybernetics;
*Electronic Data Processing; Electronic Equipment;
Information Processing; *Information Storage; -
*Information Systems; Performance Criteria; Systems
Analysis; *Systems Approach; Systems Concepts;
*Systems Development

ABSTRACT

, A methodology is described for an automatic design
systea initially defined in terms of logical processes or program °
modules. Processes and files are grouped and reorganized in such a
way as to produce an optimal design with respect to a specific target
machine. Performance criteria for the optimal design are defined in
terms of transport volume savings and core memory requirements,
starting with a graph theoretic representation of the interaction
betwveen processes (or modules) and files, the methodology consists of
tWo components: (1) a generator of feasible alternatives and (2) a
procedure for reorganization and core generation for specific
groupings. Not only can an optimal design for the processing system .
be generated; but due to reorganization techniques, the resultant
nodules (defined from specific process groupings) may approach the
eaﬁpgﬁational efficiency expected of ah integrated progranm.
~ (Authot)

\

ED G99973

US DEPARTMENT OF HEALTH,
BDUCATION & WELFARE
NATIONAL INSTITUTE OF

EDUCATION

1H1S DOCUMEN! HAS BEEN REPRO -
DUCED EXACTILY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG!N
ATING IT POINTS OF VIEW OR OPINIONS
S1ATED DO NOT NECESSARILY REPRE
SENTOFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

PROCESSING SYSTEMS OPTIMIZATION
THROUGH AUTOMATIC DESIGN AND
REORGANIZATION OF FROGRAM MODUIES

by

J. F. Nunamaker, Jr.
WO CO Nylin, Qn.
and
Benn Konsynski

Paper No. 391 = January 1973

Institute for Research in the
BEHAVIORAL, ECONOMIC, and
MANAGEMENT SCIENCES

KRAMNERT GRADUATE SCHOOL OF
TNDUSTRIAL ADMINTSTRATION

A Purdus thiversity
West tafayette, Indiana

PROCESSING SYSTEMS OPTIMIZATION
THROUGH AUTOMATIC DESIGN AND
REORGANIZATION OF FROGRAM MODUIES

by

J. F. Nunamaker, Jr.
w. CQ Nylin, Jr.
and

Benn Konsynski

Purdue University
December, 1972

Presented at the Uth International Conference on
Computer and Information Science., Iroceedings to
be published by ACADEMIC PRESS in 1973.

ABSTRACT

PROCESSING SYSTEMS OPTIMIZATION THROUGH AUTOMATIC DESIGN AND
REORGANIZATION OF PROGRAM MODULES

J.F. Nunamaker, Jr., W.C. Nylin, Jr., and Benn Konsynski

A methodology is described for the automatic design of a
processing system initially defined in terms of logical pro-
cesses or program modules., Processes and files are grouped and
reorganized in such a way as to produce an optimal design with
respect to a specific target machine. Performance criteria
for the optimal design is defined in terms of transport volume
savings and core memory requirements.

Starting with a graph theoretic representation of the inter-
action between processes (or modules) and files, the methodology
consists of two components: (l) a generator of feasible altetna=
tives and (2) a procedure for reorganization and code generation
for specific groupings. The generator for the feasible alterna-
tives uses an implicit enumeration algorithm to optimize process
groupings in an efficient manner. The objective is to group
processes into modules which minimize the interaction between
modules while still satisfying the logical requirements of the
program and the physical constraints of the hardware. Finally,
after the program modules have been specified, program and file
reorganization will be performed to further optimize the design.
Reorganization includes the combination of similar data passes
on the same file to minimize transport volume -and the merging
of loops to enable elimination of code and of intermediate
data files.

The code generator will then accept the optimal program
design and produce an optimized source language program for
the target machine. Consequently, not only can an optimal
design for the processing system be generated; but due to
reorganization techniques, the resultant modules (defined
from specific process groupings) may approach the computational
efficiency expected of an integrated program.

;
PROCESSING SYSTEMS OPTIMIZATION THROUGH

~ AUTOMATIC DESIGN AND REORGANIZATION OF PROGRAM MODULLS

J.F. Nunamaker, Jr. , William C. Nylin, Jr.
Purdue University Southern Methodist University
Lafayette, Indiana Dallas, Texas
and

Benn Konsynski, Jr.
Purdue University
Lafayette, Indiana

1. INTRODUCTION

L] .
It is recognized that perhaps the single most important problem

which faces a computer user is that of conversion of programs to
another machine. This is true even for programs written in "machine
independent", high-~level source languages. Changes in the system
COnfiguration; e.g., hardware, operating system, or file structure,
may have altered the operating environment significantly so that the
programs no longer take advantage of the‘strength of the configuration,

For whatever reasons that make the conversion necessary, such as
the replacement of an obsolete machine or the requirement to run the
pfogfam on additional machines, the situation is applicable to many
users. It is also recognized that many users have considered auto-
matic conversion of computer programs with techniqués such as emula=-
tion and simulation. However, very few users have seriously attacked
the problem of the optimal reorganization and design of the program
when moving it from one machine to another. |

Many users are of the opinion that anything less than 100%
automatic conversion is not worth considering; however, it can be
stated emphatically that less-than-complete conversion tools are
useful and the redesign and reorganization are necessary for effi-
cient operation of the resulting program modules.

The transferability problem touches on all aspects of software
design; specific methodology from decompiling, graph models of pro=
grams, operations research search techniques, and problem statement
languages are used to form an approach to the problem.

8

NUNAMAKER, Program Module Design 9

I1. METHODOLOGY

L

What is needed is a methodology for converting, redesigning, and
reorganizing programs from one machine to another as a result of
stated performance criteria.

This paper discusses a software system for the design and re-
organization of computer programs, and a methodology is described
rﬁg;;phe automatic design of a processing system initially defined
in terms of logical processes or program modules. Processes and
files are grouped and reorganized in such a way as to produce an
optimal design with respect to a specific target machine. Perform-
ancde criteria for the optimal design are defined in terms of transport
volume savings, core memory requirements, and input/output requirements.

Transport volume of a system is a measure of performance that
is related to total processing time. Processing time is a non-
decreasing function of transport volume; therefore, it is desirable
to decrease the transport volume of a set of program modules., It
was shown by Nunamaker [1,2] that there exists a class of process
groupings which result in a reduction of transport volume when two
Or more processes are grouped.' Using a slmple case as an example,
the transport volume is reduced when two processes are grouped if
the output of one is the input to the other process. As a result
of the grouping of the processes into a composite program module,
the core requirement will be increased and the input/output require-
ments of the system may;be affected.

In this paper the assumption is made that we are starting with
a well-defined problem, and that the set of processes can be deséribed
in terms of a directed graph. In addition, we know other information
such as frequency, volumes, etc.

Building on the graph theory representation of the interaction
between processes (or mocdules) and files, the methodology consists of
two components: (1) a generator of feasible alternatives and (2) a
procedure for reorganization and code generation for specific groupings.
The generator for the feasible alternatives uses an implicit enumera-
tion algorithm to generate alternative groupings in an efficient man=
ner. The objective is to group processes into modules which minimize
the interaction between modules_while still satisfying the logical

NUNAMAKER, Program Module Design - 3

requirements of the program and the physical constraints of the hard-
ware. Finally, after the program modules have been specified, program
and file reorganization will be performed to further optimize the
design. Reorganization includes the combination of similar data passes
on the same file to minimize transport volume and the merging of loops
to enable elimination of code and intermediate data files.

The program Module Generator presents a very large set of feasible

program modules for the target machines; it is the task of the selec~-

tion algorithm and the reorganizer to construct a reasonably godd set
of program modules. The code generator then accepts the optimal
program design and creates the optimized physical code for the target
machine. Thus, the Program Module Generator chooses from ahong all
conceivable combinations of processes for program modules and selects
the "best" design after considerable interaction with the program
reorganizer.

Consequently, not only can an optimal design for the processing

system be generated, but due to recrganization techniques, the re=-

sultant modules (defined from specific process groupings) may approach
the computational cfficiency expected of an integrated program.

An overview of the mcthodology for the automatic design and re-
organization of program modules is shown in Figure 1. The specific
subject of this paper begins with the assumption that a Problem
Definition exists and is shown below the dotted line in Figure 1.

The problem definition, generation, and translation into a problem
statement is the subject of another paper ([Z].

IIT. DEFINITIONSK

TGRS G R .

A programming system, PE = (PR,F,T,E), is defined as a set of
processes (PR), files (F), the control flow of the files(T), and the
relationships of the set of processes and files (E). These defini=
tions are extensions of the work of Langefors (3] and Briggs [4].

pr = Process--2 well-defined task representing a pass over one

or more data files; where PR=(pr1,.pr2, ey prn).

£ - Pile--The data input or output of a process; where

F=(f1, fé, ey fk)‘

4

-

NUNAMAKER,VProqram-wodule Design

Source

Program in LO

___.._ampreprocessor

< >

Hardware

Software
Character-
> istics

Figure 1.

and ..__ig

Problem
Statement
in Ll

Syntactlcal and
Logical Problem
Statement Analyzer

Analysis
of Problem

4
\)
Specmf;catlons Problem
for Definer
Target — e
Programs &

Y

Inadequate, incomplete

Definition
in Ll
iammet
Program

Module
Generator

Program
Modules
il’] Ll

Code
Generator

4’.

Target Program
in Ly

AL

or inconsistent definitiowr}“d

Program
Re-Organizer

L0 - Source Language
Ll - Intermediate Language
L2 - Target Language

Overview of a System for the Automatic Design and

Reorganization of Program Modules

NUNAMAKER, Program Module Design 5

T - Control Flow Matrix--The control flow precedence rclationship
of the programming system.
‘ tiﬁ = 1 if control flow can pass directly from fi to fj.
tij = 0 otherwise.
E - Incidence Matrix--Processes and files.
eij =1 if fj is én input to pr,.
eij = -1 if f_j is an output of pr, .

eij = 0 if there is no incidence betweer f. and pr,.

The control flow of a network is described by T, and the data
relationship of the processes and files in a network is described
by E. }

From the Incidence Matrix we can define the concept of transpbrt

- volume. Transport volume is one component of the performance criteria
which are used to evaluate alternative program module design. Per-
formance criteria for program module design is a function of the fol-
lowing compcnents: (1) processing time, (2) transport volume, (3) core
size, and (4) the number and type of input/output units required.

Let Vj be the volume of file fj; Ri' the number of logical inputs
and outputs of pr, i and mpj, the multiplicity of file transport for fj.
Thus mpj represents the number of times fj is an input or_output of a
set of processes; cmy represents the core memory required by Pry.

oQoi =t lelj! H J’..=l,2,ooo'no

mp., = ﬁ e, . 7 ‘312 ve ko
pj L l lj|] X ’
The transport volume for £, is:

j
tv., = mMp. °* V..
g = TPy " Yy :

The transport volume for the set of data files is:

v = f;’ £V,
V3

i=1
Let pr, be represented by a [:: and £, by a (:) .

9

NUNAMAKLER, Program Module Design

6

The Incidence Matrix (E) and the associated incidence graph for a

programning system of six processes and ten files is shown in Figure 2.

o L

...G/

o

.

B0

~©

N Files
] " 1 " ‘
a b c d e e f, f d h, ziv,Fqﬁi
A | -1 1 0 1 0 0 0 0 0 0f 3130
B 0 -1 0 0 1 0 0 0 0 el 2110
5 C 0 0 -1 0 0 1 0 0 0 o| 2|15
o D 0 0 0 -1 0 0 1 0 0 1| 3120
g E 0 0 0 -1 -1 0 1 0 0| 3110
g F 0 0 0 0 -1 =1 1 0| 3110
< "
§ mp 1 2 1 2 2 2 2 2 1 1
v.130 10 20 50 10 10 10 20 30 50
tvj 30 20 200 100 20 20 - 20 40 30 50
Figure 2. Incidence Graph and Matrix E for a programming systen

of 6 processes and 10 files.

This example is also used later in Section VII.
We now must define additional matrices needed for the grouping

iERiC‘ procedure.

10

NUNAMAKER, Program Module Design . 7

) | The E matrix of processes and files is used to generate the data

flow Precedence Matrix of processes P. Note that a distinction is
made between the control flow T of the programming system and the
precedence relationship of the processes with respect to data flow.

P - Precedence Matrix: Processes

pij = 1 if pry is a direct precedent of prj.
p:.. = 0 if otherwise.
1)
P can be reconstructed from E as follows: ,
pij = 1 if and only if J £ 3 €:p = -1 and ejz = 1,

The Precedence Matrix (P) of processes for the example of Figure 2

is shown in Figure 3.

A C D E F ‘
, alo o 0 0 o0 0

B[1 0 0 0 o0 o

clo o0 o o0 o0 o

pl1 0o o o o o

E 1 1 0 o0 o'

F/|O 0 0 1 1 o0

Figure 3. Precedence Matrix of Processes P.

The R, R*, and G matrices are generated for the entire set of
Processes.

R - Reachability Matrix: Processes

The R matrix is used to check precedence violations in the

grouping procedure ;
R =pV Ptv....v p971

where g is the index of the nilpotent matrix P: i.e., when P9 = 0,
rij = 1 if pry has any precedence relationship with prj.

rij = 0 otherwise.

11

NUNAMAKER, Program Module Design .

The Reachability Matrix (R) of Processes for the example of
Figure 2 is shown in Figure 4.

Figure 4. Reachability Matrix of Processes R.

R* - Partial Reachability Matrix: Processes

The R* matrix is used to calculate the G Matrix.
R* = p2 v p? v,,,.v p¥°¢

r*ij = 1 if 23 has a higher (2 or more) order precedence

with prj.

r*ij = 0 otherwise.

The Partial Reachability Matrix (R*) of Processes for the example
of Figure 2 is shown in Figure 5. '

Figure 5. Partial Reachability Matrix of Drocesses R¥.

12

| - NUNAMAKER, Program Module Design .

G - Feasible Process Pairs Grouping Matrix: Processes

If g5 i3 = -1, there exists hlgher (2 or more) order relationships
between pry and prj; and pri'cannot be combined with prj. If gij = 0,
there is no precedence ordering; and pry can be combined with prj.
This indicates a feasible but not necessarily profitable grouping. If
gij = 1, there is either a direct precedence relationship, and pry can
and should be combined with prJ since this indicates a feasible and
profitable grouping; or there is an immediate reduction in logical

input/output requirements when pri_and prj are grouped.

= =] j * * . = =
gij 1l if r i3 or r 3i 1l or i=j,
= * = * =2 ' = = . AN ¢
gij 0 if r i3 0 and ¥ 34 0 and pij 0 and pji 0; except
when (pi2=l and pj£=l) or (pzi=l and pzj=1).
= * = * = ; = =
9 5 1 if r i 0 and r 31 0 and [(p.. 1) or (pji 1) or

(p. T =1 and p. z-l) or (pz =] and Poi =1)] .

pry has a first order precedence or succedence rela-
. tlonshlp with pr, and prj

The Feasible Process Pairs Grouping Matrix (G) for the example
of Figure 2 is shown in Tigure 6.

A B C D E F
-1 1 0 1 -1 -1

-1 1 1 1 -1 1

M 3 O QO W P
T o
=
]
=
o
(-
!
-

-1 -1 -1 1 1 =1

L]

Figure 6. Feasible Process Pairs Grouping Matrix G.

A list of all feasible pairs for grouping of processes is con~ .
structed from the G Matrix and passed to the generator of alternative
' groupings.

g

13

NUNAMAKER, Program Module Design

10

It is known that by grouping processes into a composite process
called a program module, the multiple input and output of files can be
reduced. A program module PMiis created by combining and reorganizing

processes Pr. 4, Pr; s seeey pr, .. Let Lo be the source language; Ll'

1 2 k

the in;ermediate language; and L2, the target langvage. Nota: that a
situation m-y exist in which a single language could serve as LO’ Lqs
and L2.

Define procedure RG which maps processes in language L0 into re-
organized modules in language Ll; RG performs the following tasks:
1. Conversion of the individual processes from L0 to Ll if L0 # Ll.
2. Transformation of the processes written in Ll into a syntactically

and logically correct module in Ly

3. Reorganization of the module.
Thus, one can define a program module PM. using RG.

PM. = RG(Pr, , s++ssy Pr;) is a feasible program module if
i iy i - :
pr. € PR,1<j<k, and PM, satisfies all the constraints for a valid

J
subprogram in language L for the target machine. Thus, a feasible
program module must satisfy the core memory and logical constraints of
the program,

M.={pr. ,pr- ¢ oses ey pPr
i i i, i

feasible program module.

k} is a feasible grouping if PM, is a
§ = {Ml, Moy voeey Mq}'is a cover for the programming system PS if:
i) M. l<i<q is a feasible grouping.
i) MU My U...U M = PR, ,
1ii) MinMj = § for 1 # § ¥ jeq, j<i, igq.
Note that PM; = RG(pr,) must be a feasible module for lc<ign for
a cover for P8 to exist. We can now define the set of all possible
sovers (A) for pS. (i.e., A = {§]6 is a cover of PS}.)

14

NUNAMAKER, Proygram Module Design 11

IV.V PROCESS GROUPING CONCEPT

In generating an efficient design, it is nccessary to decrease
the transport volume (total number of characters read in and written
out of main memory) in order to reduce the processing time. If file
volumes remain constant, in order to decrease the transport volume,
the multiplicity (the number of times a file is input and output) of
file transport must be decreased. After the Program Modules are
Specified, the files are consolidated for the purpo of reducing the
number of input/output files required and for better utilization of
storage in auxiliary memory. Process grouping is shown to.corfespond
to a grouping of rows of the Incidence Matrix, and file consolidation
is shown to correspond to a grouping of coluwns.

Program module design is concerned with the reduction of pro-
cessing time and can be summarized by the two methods by which the
processing time can be reduced. The generator of alternatives detex=
mines whlch opgrations (Processes) will be grouped 1nto Program Modules:

1. Group Processes which eliminate the writing out and the reading
in of a file. ‘Consider the example in which the output of one
process is the input to another process, as shown in Flgurc 7.

OO0

Figure 7. The output £ if pry is the input ‘to pry.

The transport volume of £ is eliminated when pr, and pr, are grouped
as shown in F! :re 8.

Figure 8. Grouping of pry and pry of Pigure 7.

15

NUNAMAKER, Prog:am Module Design 12

2. Group Processes which require the same file as shown in Figure 9,

A {

—~©
O

Figure 9. PX, and Prp read a common input file fc'

The transport volume is reduced when pr, and pry are grouped since F.
is read only once as shown in Figure 10.

0

Figure 10. Grouping of PX, and prp of Figure 9.

It may be profitable also to group £, and £, as shown in Figure 1l,

(::)——— A,B | 4&!’

Figure 11. Grouping of fa and £, of Figure 10.

The objective is to reduce total tranSport'vélume and thus total
processing time. |

The concept of process grouping is illustrated with the example
from section VIT of the paper and the Incidence Matrix and graph for
the example is shown in Figure 2. The transport volume TV for the
example is 350 units, the core memory required is 30 units, and the
maximum input/output requirement for any process is 3. The crueial
items in determining which processes to group into modules are the
transport volume and main memory size. It is desirable to produce
modules (subject to the memory constraint) minimizing the transport
volume for the programming system. . '

16

NUNAMAKER, Program Module Design ‘ 13

Consider as an altérnafive.design'cumbining Prar Prp, and P
into one program module and Prns PYpy and pfF into a second program
module. The resulting transport volume TV is 270, the core memory
will be no larger than 55 units, and the maximum number of input/
output processes for each program module has increased to 5. This
alternative design is shown in Figure 12.

a c d e' e" g h zi cmy
MyJ 0O 0 -1 -1 -1 1 1[5 |40
My | -1 -1 1 1 1 -0 o0}s5 |55
mp,| 11 2 2 2 1 1 -4
vyf30 20 50 10 10 30 50
tvy[30 20 200 20 20 30 50

Figure 12. Grouping Processes of Figure 2 into two Program Modules.

The transport volume for the example of Figure 2 has been reduced
from 350 units to 270 units, the core requirement has increased from
30 units to 55 units for program module size and the maximum input/
output requirement has increased from 3 to 5.

Several aésumptiOﬁs are made in the graphical representation of
the processes and files. Control flow over a file is assumed to exist
for any process. Multiple data passes over an input and output file
as illustrated in Figure 13 are shown as follows in Figure 14 for the
computation of transport volume. .

‘ L

Figure 13. Multiiple data passes over an input file and output file.

O ON

Figure 14. Graphical representation of the examples of Figure 13 for
the purpose of computing transport volume.

In other words, an element of file "a" is read and an element of
file "b" is written. Control then reads the next element ¢f "a" and.
writes the next element of "b". Therefore, cycles within a process
are not showh in the Incidence Graph, but are assumed to exist in the
Incidence Graph and are shown in the control flow graph.

In addition, the situation may exist in which control flow actually
passes completely from file "a" to file "b"., This is the case when the
entire'file "a" is read before file "b" is written. For example, the
. process may involve a sort on file "a", or a compléte read of file "a"
may be required to compute various sums that are dependent on the con-
tent of file "a". |

Both cases are represented as having the same incidence matrix
‘for purposes of computing the transport volume. The T or control flow
matrix reflects occurrences of multiple data passes over a file.

The P matrix and E matrix are the same for both cases and the T
matrix is different. This iz illustratad as follows in Figure 15,

It can be noted that although the transport volume for épéeifia
files has been eliminated by the grouping, storage (in main memory)
for the information contained in those files is still necessary. It
is the purpose of rearganization to automatically restructure the
combined processes towards the reduction of the number of loops over
that information and thus possibly elim%ﬁaté the need to maintain it

18

T P E
abc AB a b c¢
al01l1l A|O1 Al=1l 0 1
bl|0 0O B|0OO B l1 -1 0
clil100 ‘
A——.@—.Br—‘@
__'_I‘__ P E
abec A B ~a b ¢
al01l1lod0 AlO1l Ai~-1 0 1
b|0O0O0 Bi0O B 1 -1 .0
c|100 .

?igure 15. Illustration of the usefulness of the T Matrix.

between two data passes. This can be ascomplished by restructuring

the loops (consecutive data passes) in an attempt to provide only one
loop over the original data file. Consequently, only a specific record
of that information file may need to exist for each pass through the
merged loop. That is, the information in that record could be computed
and used by the same pass, and no longer be necessary upon completion
of that pass. Such is the case in the example presénted in Figure 2
and described in a later section in which the combination and reorgani~-
zation of processes E and F ailow for the elimination of the Customer
Transaction File £".

A record of the Warehouse Transaction File g was used to compute
each record in the Customer Transaction File £". Similarly, a record
of £" was used to compute each record in the Customer Order File e’
and the Customer Payment File e". By grouping and reorganizing two

19

NUNAMAKER, Program Module Deéign 16

processes, E and I, the individual records for e' and e" can be com-
puted from a record of £" (which was just computed from a record of ¢).
Consequently, only the storage for a record of f" is necessary in
comparison to storage for the entire file. In addition, it may be
possible to elirinate the record of f" and compute those for e' and e"
directly from g. Such a procedure requires the following subtasks:

1. Combining processes into logically and syntactically correct
modules, f

2. Comprehensive control and data flow analysis.

3. Restructuring the module to merge data passes (or loops).

4, Flimination of unnecessary files (or data).

V. PROCESS GROUPING DETERMINATION
———-_“

The problem of assigning the various processes to modules is a
complex combinatorial problem complicated by the fact that savings
from reorganization cannot be predetermined. However, prediction of
savings in transport volume which result from process groupings can
be accomplished.

The G Matrix relates the profitable binary groupings} i.e., those
in which a savings in transport volume is incurred.

An interaction matrix is created to reflect the transport volume
savings encountered in a binary grouping of processes.. This savings
matrix or S matrix is computed as follows:

. 1
“ m 1l if ey = 1 and esy = l. 7
Sij = Sji = ;E Vi 2 if (eik = =1 and ejk,= l)or(eik = 1 and e:.,k = ~1)
k=1 ,O otherwise.

=
Where k is the file subscript of the Incidence Matrix.

Tf the binary grouping is immediately infeasible, we maintain the
potential savings we would encounter if the grouping is made at a later
time.

The TV savings which result from é.grouping of n processes is:
then reflected in the sum of the savings of binary grov-ings of the n
processes. (NOTE: There are n(g-lj binary combinations of processas,)

Thus, our § matrix is presented in Figure 16 for the example problem
given in Figure 2.

20

0 20 20 0 - 40
0 0 0 20 40 -

Figure 16. Matrix of transport savings for pairw15e groupings
for the example of Figure 2.

TVS is the Transport Volume Savings function for any grouping M.

TVS (M) = :> Sij

prieMr ?rjeM
i<j

Thus} from above:
T™VS (DEF) = SDE + sEF + sDF 0 + 40 + 20 = 60
S

TVS (ABD) = S, + Sy + §, = 20 + 0+ 100 = 120

Note that this short-cut method for computing Transport Volume
Savings (TVS) is based on the assumption that a file is input to no
more than two processes., If a file is input to three or more processes,
the Transport Volume Savings must be computed directly from the Inci-
dence Graph of the proposed design.

Transport Volume Savings is supplemented by gains occurring as a
result of reorganization.

The objective is to minimize transport volume subject to core
constraints and feasibkle grouping consideration. This may be stated
as follows:

If C(Mi) is the core requirement for module RG(Mi) and CT is the
core constraint,

(M) <CT , 1l <izgq

It is important to note the interaction effects encountered are
of a non-convex nature:; i.e., there exist local optima which are not
necessarily global optima; thus, to guarantee a global optimum, the
entire solution space must be considered.

<1

NUNAMAKER, Program Module Design 18

The grouping procedure was first formulated as a Quadratic
Assignment Algorithm [5] in order to implicitly truncdate unprofitable
solutions from the solution space and facilitate specd of convergence
to a good solution. However, optimality cannot bé guarantced for
this problem as we formulated it using the Quadratic Assignment
Algorithm. The process grouping procedure described in the next
section is formulated as a straightforward enumeration scheme. The
number of feasible desiqns is not too large for problems of 50

processes or less whe., -e memory and precedence relationships are
used as constraints on Module size.

A. GENERATION OF FEASIBLE PROCESS GROUPINGS TO FORM MODULES

The G matrix is used to create a listing of binary groupings.
The binary pairs (i,j) of the upper triangular portion of the matrix
are selected if 954 = 1l and it is not true‘that 32 3 Pyq and r,. = 1.

%3
The consequence of allowing the (i,j) pair into the pair list given the
above condition is the generation of infeasible groupings. Considexr

. the following precedence graph of processes as shown in Figure 17,

A - C

/

Figure 17. Precedence graph of processes-

We observe that p,p = 1 and rp, = 1 hold; thus, AC is eliminated frém
the pair list; otherwise {AC,B} appears ta be a feasible design, which
it is not. By eliminating the pair {AC} from the feasible list of
pairs, we create only feasible designs. (NOTE: {ABC} is still a
feasible grouping.)
. " Once a list of feasible pairs is created, feasible modules of
size 3,, n, are generated by the following algorithm.
A list Y' of feasible groups of size k+l1 is generated using the
list Y of groups of size k by selecting an element of ¥ and comparing it
with every element of the list of pairs and adding a process to thé

22

T e e e s]

NUNAMAKER, Program Module Design 19

grouping if that process is in’'a palr with. Aan element of the group and -
no output of any process of the element of Y is input, or reachablec as
input, to the process to be added to the grouping. This means that if
Yy € ¥ and pr, ¢ vy then y U pr, is a feasible grouping if ¥ prj €y 3
gij = 1 and for all pr, €Y if ¥ pr, ¢ v and 2#i then Pyy = 1 implies
Xoy # 1 and Pox = 1l implies riy # 1.

This is to say that a process is added to the grouping if there
is no output from a process of the group which ;s indirect inéut to
the candidate process; i.e., there is no process noﬁ in the grouping

which accepts output from the group and generates input to the candi-
date process. An example is shown in Figure 18 of the problems that

A<}

Figure 18. Tllustration of Potential Grouping Problem.

can arise in the grouping procedure. If {A B C} is a grouping, then
we see that the grouping {An B C D} violates our rules for acceptance
of the candidate D for pBE-l and rp ~l and yet E ¢ {A B C} and E#D.
Thus {A B C D} is not a feasible grouplng. We can see, however, that
{ABCE} and {A B C D E} are feasible groupings.

From the list of feasible pairs, all feasible triples are gene-
rated. Two pairs are grouped if they have one process in common. From
valid pairs and triples, designs of size 4,, n, are generated.

This procedure generates modules from size 2 up to n where n is
the number of elements of PR. The result is a 1list of all possible

feasmble process groupings M, with the exception of the individual
processes. Thus, in the example we call this listing 8, and

23

P

o e e S S e =

NUNAMAKER, Program Module Design '

The set Y™} of feasible modules N
ig initially empty. J

Select y ¢ "

Create process groupings Ym*ﬁ
of size m+l from groupings ¥

of size m and the lis: of
feasible process pairs.

yes
211 Select a pair of
. , . r
pQ%, prj pairs | processes Pflo P 3
considered for y? from the list of l
' feasible process pa.rs
) X
If only one process pr, ¢
of the process pair ke 3 ¢ yes —<<: i n
. belongs to the m J Pry ¢ Y
size grouping y,
form a m+l size
grouping y'. Add
pr ¢ y.
ket no N
Process grouping y' +
is a possible program
module.

If y' is already a member of

Y™1 then create another s
program module.
Check core constraint for >

program module y'.

Is there a precedence
violation with respect to the
m size process grouping y and
the candidate process pr,?

. I1f a precedence violatio
exists, then reject the
grouping y', where y'=sy U pry.

Add the process grouping y' — —— |
to the set of feasible gyl o g+l vyl —
program modules Y™*!,

Figure 19. Generation of Feasible Process Groupings To Form Modules.

F R4

NUNAMAKER, Program Module Design

The set of feasible gystems designs
m+l
]

is initially empty.

Create groupings 0m+l
of size m+l from groupings >
m

e 1

of size m.

yes

’//~\\ - Sclect proeessing

all b ¢ 8 :
considered grouping (module) (=
m b from 8
. for 62

I1f candidate module b has
a process in common with 9
reject the candidate grouping

o™ and b
have a

common
process?

6™ U b,

Module grouping 0m+l is a
possible programming systems 6
design.

m+l - Om U b

1f em+l

um+l then create another grouping

is already a member of

of modules to form a new systems
desigp.

Is there a precedence violation
with respect to the m size module

grouping 6™ and the candidate
module b? If a precedcence
violation exists, then reject the

groﬁping 6m+l, where 6m+l = Gm U b.

e . , 1 R B AN —
Add the module grouping g™t o » o
to the set of feasible systems am+1 + am+1 v o™ 1L

designs o™i, . -

Figure 20, Generation of Alternative System Designs

NUNAMAKER, Program Module Design

- -

{AB}
{aD}

(EF}
{Agc}

{DEF}
. {A§CD}

{ABéDEFU

T

the list of all feasible groupings M is the union of the set B8 and the
set PR or M = B8 U PR. See the flow chart of Figure 19.

B. GENERATION OF ALTERNATIVE SYSTEM DESIGNS

* A similar procedure is used to select all feasible combinations
of modules (process grouéings) that form a cover for the programming
system PS. Note that all elements of B satisfy the system's core
constraint so modules may be combined freely so long as no modules

. . in the cover have any common processes. The core constraint of a
system is satisfied as long as the core requirement of the largest
. program module in the design does not exceed the constraint.
The proce.lure seeks to generate sets (o™hm=1,, 8, where
ol is a set that contains all possible combinations of m modules and 1
s <n is the maximum number of modules that can be combined. Clear;yo.i
o

m+1 m

= B. Proceeding by inductive definition, « is generated from o .

To generate am+1, for each element 6" ¢ am, o™ is combined with any

element b ¢ B for which b has no process in common with the modules

of 8™, Then, 6m+1 = 6™ U b becomes an element of am+l. This procedure

is shown in Figure 20.
Further, as above, there must be only direct precedence between
. the set 6™ and the candidate module b; i.e., the case as illustrated
in Figure 21 does not occur.

em

Module‘
a

Figure 21. 1Illegal Grcuping Situation,

26

BEST COPY AVAILABCE

NUNAMAKER, Program Module Design 23

Thus, for ekample, if
(BC,AD} € a? and {EF} ¢ B and {BC,AD} N {EF} = ¢
Then {BC,AD,EF} €& a?*! = a?,
Further, if N
(ABC} € a! and {EF} ¢ 8 and {ABC} N {EF} = ¢
hen {ABC,EF} ¢ ot
Note in the first case a cover of PS is formed.

After all combinations have been enumerated, a cover § is formed

from each»combination o™ ¢ o as follows: We let ek € ak = {Ml, coeeoy
Mk}, where M. € 8 and feasible module M, = {pril, coe et prin}. My
‘ i

container_processes.

Then the residual processes can be defined as:

n.
b' = {prilpr e [PR- UL ()1} thus 6 0% U b,

J=1

In other words, a feasible design is any element em of any<ocm
combined with all ungrouped processes as incdividual modules., For
example, 8 = {ABCD, E, I} is a feasible design for the programming
system diagrammed in Figure 2.

C. 7TrANSPORT VOLUME SAVINGS CALCULATION
The transport volume savings- for any design can be calculated by

" examining each-module of the design as stated earlier and the savings
for the design is the sum of the savings for any modules. Thus, if
§ = {Ml, Moy weeny Mq}, then the transport veclume savings for ¢ is

VS (§) =) A — ~ny
i=] prj € Mi’ pr, € Mi
i<k
The optimal design with respect to transport volume savings can be
designated as follows:

g

jk
§ . = MAX (TVS(S))

opt
é

R7

NUNAMAKER, Program Module Design 24

The core requirements for a design can be designated as the maximum

requirements for any moddle of the design; thus, it is
. Maximum [C(Ml), C(Mz),,VC(Mq)] .

The list of designs are then sorted in ascending order by core and
descending order by transport volume savings and the x best designs
(highest transpcrt volume savings) are saved for each range of core;
i.e., top ten for rahge 20K~30K bytes of memory, top ten for range
31K~-40K bytes of memory, etc. The core constraint may be as a result
of a partition size or an arbitrary constraint on module size. The

number of designs (x) to save for each range of core memory is arbitrary.

VI. COMBINING PROCESSES

The combining of processes in L, jinto program modules in L, re-

. quires the translation of those processes into L. This translation
can be made either bhefore or after the processes are cémbined. How=
ever, if the translation is made first, then the procedures for com-
bining program modules are over the same language as the reorganiza-
tion procedures. This would enable new processes to be addead to 4
already reorganized modules. procedures necessary for combining modules
include those to resolve identifier conflicts, interface the modules
with respect to external files, and perform structural modifications
necessary to produce the desired syntactically and logically correct

" module.

Nylin [6] has discussed techniques which have been used for the
implementation of these procedures., In addition, other techniques
can be used to take advantage of any commonality which may exist
between the modules being combined. Yershov [7,8] described techniques
to efficiently utilize storage by allowing certain variables to use the
same memory location. Similarly, algorithms exist for detecting common

. data storage areas and to eliminate redundant procedure definitions [6].

Much of the control flow information necessary for reorganization
can be accomplished with existing techniques such as analysis using
Boolean connectivity matrices first described by Prosser (91, or the
interval method described by Cocke and Schwartz (10] and Allen (1l].

28

NUNAMAKER, Program Module Design 25

Techniques for additional control flow information which can be used in
reorganization are described by Nylin [6]. Existing techniques [12, 13,
14) can be used to compute variable "usage" information utilizing the
data gathered in the control flow analysis.

The control flow and data flow infcrmation procedures are ncces=
sary to locate loops (data passes) which may be candidates to be merged.
Of particular interest are loop pairs in which one loop is always
executed the same number of times as a specific branch of the other,
Thus, onc loop computes the control parameters for the other. If this
can be determined and if additional data flow information allows the
loops to be merged, one of the loops can be eliminated and its body
moved into the other loop. This procedure may include the replacement
of an induction variable as well as the redefinition of certain program
variables necessary as a result of merging the loops. It should be
noted that the complexity of the control flow within either loop is not
a factor in the ability to merge them. '

Once the loops are merged, it may be possible to apply subsamp-
tion techniques [6,13] to eliminate unnecessary stores into variables.
That is, the definition of a particular variable (which could be the
internal representation of a data file) may be able to replace subse~
quent occurrences of that variable. Thus, due to the merging of two
loops (data passes), it is no longer necessary to maintain information
which is only utilized by a specific pass through the merged loop.
Hence, an intermediate file (used for communication between the loops)
can be eliminated. '

Once a decision Es made as to which processes are to ora a module,
they must be integrated by some automatic procedure. This combining
of specific proucesses to form a program module that can be executed on
the target machine involves sceveral steps. First, the processes nust
be able to be represented in an intermediate language that has the
following attrihutes:

1. An ability to measure the memory required to implement the
processes on the target machine.

2. The ability to automatically analyze the grouped processes and
perform reorganization procedures on their loop and file structure.

3. The ability to map the grouped processes into the desired programs
on the target machine preserving their recrganized structure.

29

NUNAMARER, DPragram Module Design } 206

It should be noted that the intermediate language (Problem Statement
Language) could be either the original language or the desired languago
for the target machine. It may even be desirable to compile the final
grouping in the intermediate language to produce object code directly.
This could be especially advantageous if the processes arc described
by a high-level problem statement language. That is, there exists no
need for any other level of documentation since new modifications to
the system would be made at the problem statement level. Thus, when
changes are made to the existing processes or new processes are added,
the final modular programming system can be automatically regenerated.

Clearly, this is necessary to guarantee that the system remains
optimal and that no errors are introduced by adding code to a module
consisting of multiple processes.

Oncce the processes are represented in the intermediate language
Ll’ they must be combined into a logically and syntactically correct
program module for Ll’ The program modules (processes represcnted in
Ll) can be automatically combined to form larger modules in Ly Thesc
multipass modules could be automatically analyzed; and, if possible,
reorganized to combine multiple passes over the same file. In addi=-
tion, in some cases the file could also be eliminated. The elimination
of such files ﬁot only increases the efficiency of the resultant module
but it decreases the memory it requires [6].

In addition to the directed graph representation of the set of
programs, the following information is assumed to be available for
module reorganization,

'+ Process documentation 4. File usage 7
2. Source deck or list of processes 5. Input and output test data
3. Operating instructions 6. Frequency of process cycles

VII. EXAMPLE

L

The example below is a system of processes which creates a
warehouse shipping schedule, | .

The input is considered to be a tfansaction file containing
Receiving Reports, Customer Orders, and Customer Payments, The
transactions are divided into a receiving file and a customer
transaction file.

The receiving reports are used to update the inventory on hand
file, while the customer orders and payments are separated and a
payment summary produced.

The Incidence Matrix for this example is shown in Figure 2,

30

NUNAMAKER, Program Module Design , 27

PROCESSES

- Shipping Schedule Generator

~ Order file sorting for Scheduler

Customer Payment Summary Generator

~ Inventory Update :

- Separate Customer Payments from Customer Orders

- Separate Receiving Report from Customer Transactions

mERoOQx>
1

FILES

- Shipping Schedule Report

- Customer orders sorted by item
- Customer Payment Summary
Updated Inventory '
Customer Orders

Customer Payments

Receiving Report

Customer Transaction

Warchouse Transaction

- 0ld Inventory Master

HE OO TR
1

=]

L]

. ‘The files e', é", and f' are described below:

RECEIVING REPORT (f') CUSTOMER ORDER (e')
Columns Data Columns Data
1 - 2 'rV! l - 2 'cg!
3 - 7 Vendor Number 3 - 7 Customer Number
g - 27 Vendor Name g8 - 27 Customer Name
28 ~ 47 Vendor Address 28 - 47 Customer Address
48 - 55 Value of Goods 48 - 55 value of Goods
56 - 60 Component Number 56 = 6C Component Number
6l -~ 65 Quantity Received 61 - 65 Quantity Recceived
66 - 71 Date Received 66 - 71 Delivery Date
72 - 77 -Blank 72 = 77 Order Number
78 - 79 Warehouse
CUSTOMER PAYMENT (e")
Columns Data
. 1 - 2 'Cp'
3 - 1 Customer Number
8 - 27 Customer Name
. 28 - 47 Customer Address
48 - 55 Amount Paid
56 = 71 Blank
72 = 77 Order Number

The P, R*, R, and C Matrices for the above example are given in Figures
3,4,5, and 6 respectively.

ERIC 31

NUNAMAKER, Program Module Design 28

The transport volume savings Matrix S is given in Figure 16; thus, the
total transport volume for this example is 350 units. The procedure
detailed in Figure 18 was executed for CT=50 with the resultant module
groupingss; .

H]

My {a,D}

M, = (B,C,E,F}

C(Ml) = 50 < 50

C(Mz) 45 < 50

With the organizing completed, the final transport volume was 170.
This resulted in a savings of 180 uniis and only 40 units more than
the absolute minimum of 130 units. If the core constraint is relaxed,
the minimum transpoct volume is obtained when all processes are
grouped into a single module. _

To illustrate combining processes into modules utilizing reorgani-
zation techniques, cousicder processes D, E, and F. Modules representing
each of these processes can be represented by the following COBOL pro-
cedure divisions.

PROCESS D ”
OPEN INPUT OLD-INVENTORY~-FILE, RECEIVING=-REPORT-FILE,
OUTPUT UPDATE=-INVENTORY-FILRE.,
REWIND RECEIVING=-REPORT-FILE,
LABEL. READ RECEIVING-REPORT-FILE AT END GO TO CLOSER.
PERFORM UPDATE INVENTORY-FILE.
GO TO LABEL.
CLOSER. CLOSE ALL FILES.

PROCESS E '

OPEN INPUT CUSTOMER-TRANSACTION-FILE, OUTPUT CUSTOMER-PAYMENT~
FILE, CUSTOMER-ORDER~FILE.,

REWIND CUSTOMER~TRANSACTION-FILE AT END GO TO CLOSER.
IF CODE OF CUSTOMIP-TRANSACTION EQUAL 'P' THEN WRITE CUSTOMER~
PAYMENT-REC FROM CUSTOMER-TRANSACTION ELSE WRITE CUSTOMLER~
ORDER-REC I"'ROM CUSTOMER~TRANSACTION.
GO TO LABEL.

CLOSER. CLOSE ALL FILES,

32

BEST COPY AVAILABLE
NUNAMAKER, Program Module Design | 29

PROCESS F

OPEN INPUT WAREHOUSE~TRANSACTION-FILE, OUTPUT RECEIVING-REPORT-
FILE, CUSTOMER-TRANSACTION-FILE

. REWIND WAREHOUSE-TRANSACTION-FILE

LADEL. KEAD WAREHNOUSE~TRANSACTION~FILF AT END GO TO CLOSER.
IF CODE OF WARGHOUSE-TRANSACTION EQUAL 'R' THEN WRITE RECEIVING-
REPORT-REC FROM WAREHOUSE~TRANSACTION ELSE WRITE CUSTOMER-
TRANSACTION-REC FROM WAREHOUSE~TRANSACTION: GO TO LABEL.

CLOC3ER. CLOSLE ALL FILES.

By combining and reorganizing Processes E and F into one module,
the following integrated module is generated.

MODULE E-F

OPEN INPUT WAREHOUSE~-TRANSACTION-FILE, OUTPUT RECEIVING-REPORT=
FILE, CUSTOMER-ORDER~FILE, CUSTOMER-~-PAYMENT-FILL.
REWIND WAREHOUSF-TRANSACTION-FILE.
LABEL. READ WAREHOUSE~TRANSACTION-FILE AT END GO TO CLOSER.
IF CODE OF WARELOUSE~-TRANSACTION EQUAT, 'R' THEN WRITE RECEIVING-
REPORT-REC FROM WAREHOUSE-TRANSACTION ELSE IF CODE OF WARECHOUSE-
) TRANSACTION EQUAL 'P' THEN WRITE CUSTOMER-PAYMENT-REC FROM
WAREHOUSE~-TRANSACTION.
WRITE CUSTOMER-ORDER-REC FROM WAREHOUSE-TRANSACTION.
) GO TO LABEL.
CLOSER, CLOSE ALL FILES.

Thus, the processes ave able to be combined with the elimination
'of the Customer Transaction File (file £").

Similarly, Processes D and F can be combined and reorganized to
eliminate the Receiving Report File (file £'). The resultant module

is as follows:

MODULE B_F
OéEN INPUT WARLHOQUSE-TRANSACTION-FILE, OLD=INVENTORY-FILE,

OUTPUT CUSTOMER-TRANSACTION~-FILE, OLD-INVENTORY~-FILE.

REWIND WAREHOUSE-TRANSACTION~FILE.

LABEL. READ WAREHOUSE-TRANSACTION-FILE AT END GO TO0 CLOSER.
IF CODE OF WAREHOUSE=-TRANSACTION EQUAL 'R' THEN UPDATE
INVENTORY~FILE ELSE WRITE CUSTOMER=TRANSACTION~REC FROM
WAREHOUSE=-TRANSACTION. GO TO LAB!.L.

. CLOSER., CLOSE ALL FILES.

The ability to combine Processes D and F (eliminating file £')
and E and F (eliminating file £") does not guarantee that both files
can be eliminated by grouping Processes D, E, and F., That i8, certain

ERIC - 33

NUNAMAKER, Program ModuLgrDesign- ' 30

program variable dependencies existing between Processes D and E may
prohibit the reorganization of the total grouping. However, if such
dependencies do not exist, then Processes D, E, and F may be combined
and reorganized to produce the resultant module.

MODULE D_E_F

OPEN INPUT WAREHOUSE-TRANSACTION-FILE, OLD~INVENTORY-FILE,
OUTPUT OLD-INVENTORY-FILE, CUSTOMER-ORDER-FILE, CUSTOMER=-
PAYMENT-FILE.
REWIND WAREHOUSE-TRANSACTION-FILE.
LABEL. READ WAREHOUSE-TRANSACTION-FILE AT END GO TO CLOSER.
IF CODE OF WAREHOUSE-TRANSACTION EQUAL 'R' THEN UPDATE-INVENTORY-
FILE ELSE ‘
IF CODE OF WAREHOUSE-TRANSACTION EQUAL 'P' THEN WRITE CUSTOMER-
PAYMENT-REC FROM WAREHOUSE-TRANSACTION ELSE
WRITE CUSTOMER-ORDER-REC FROM WAREHOUSE~TRANSACTION. GO TO LABEL.
CLOSER. CLOSE ALL FILES.

34

BEST COPY AVAILABLE

NUNAMAKER, Program Module Design 31

AR

VIII. CONCLUSIONS

A methodology is described for the automatic design of a processing
system initially defined in terms of logical processes or program modules.
Processes and files are grouped and reorganized in such a way as to
produce an optimal design with respect to a specific target machine.
Performance criteria for the optimal design is defined in terms of
transport volume savings and core memory requirements.

Starting with a graph theoretic representation of the interaction
between processes (or modules) and files, the methodology consists of
two components: (1) a generator of feasible alternatives and (2) a
procedure for reorganization and code generation for specific groupings.
The generator for the feasible alternatives uses an implicit enumeration
algorithm to optimize process groupings in an efficient manner. Tae
cbjective is to group processes into modules which minimize the inter-~
action between modules while still satisfying the logical requirements
of the program and the physical constraints of the hardware. Finally;
after the program modules have heen ¢nucified, program and file reorgani-
zation will be performed to further owntimize the design, Reorganization
includes the combination of simslar data passes on the same file to
minimize transport volume and the merging of loops to enable elimination
of code and of intermediate data f£il: °,

The code generator will then aceent tae optimal program design and
produce an optimized source language program for the target machine.
Consequently, not only can an optimal design for the processing system
be generated; but due to reorganization techniques, the resultant modules
(defined from specific process groupings) may approach the computational
efficiency expected of an integrated program.

Although an automatic reorganizer has not been developed foxr COBOL,
one has been implemented for Pilot (a subset of Neliac) on a C.D.C.6500
at Purdue University. This language (Pilot) could represent the inter~
mediate language Ll into which processes written in COBOL could be
translated before they are combined and reorganized.

Another way in which this methodology could be used is to select
designs that are optimal with respect to a particular pricing scheme.

For example, the program design which may be oexecuted the most efficiently

NUNAMAKER, Program Module Design . 32

(with respect to transport volume) on a specific configuration could
require main memory that would be disadvantageocus to the uscr accordi.g
to a particular pricing scheme that penalizes the user for larger
memory requirements. By generating designs for various memory con-
straints, such alternative designs are available.

The methodology described in this paper could be used to break
up programs into modules or overlays and adds a new dimension to
program scheduling since we can now address the following queStion:
"What is the optimal size of a prgram modﬁle?"

ACKNOWLEDGMENT
E——————

This work was supported, in part, by Grant Number GJ31572 from
the 0ffice of Computing Activities of the National Science Foundation

and, in part, by Professor Daniel Teichroew, Director of the ISDOS
Project, University of Michigan.

NUNAMAKER, Program Module Design ' ‘ 33

REFERENCES

1. Nunamaker, J.F., Jr. On the Design and Optimization of Informa-
. tion Processing Systems, Ph.D. Dissertation, Case Institute of
Technology, March 1969. :

2. Nunamaker, J.F., Jr. A Methodology for the Design and Optimiza-
tion of Information Processina Systems, AFIPS Proceedings, Spring
Joint Computer Conference, Volume 38, May 1971. -

3. Langefors, Borge. Information System Design Computations Using
Generalized Matriy Algebra, BIT, 5,2, 1965,

4. Briggs, R.B. A Mathematical Model for the Design of Information
Management Systems, M.S. thesis, University of Pittsburgh, 1966.

5. Graves, Glenn and A. Whinston, "An Algorithm for the Quadratic
Assignment Problem, Management Science, Vol. 17, No. 7, March 1970,

6. Nylin, W.C., Jr. Structural Reorganization of Multipass Computer
Programs, Ph.D. Dissertation, Purdie University, June 1972,

7. Yershov, A.P. "ALPHA--An Automatic Programming System of High
Efficiency," JACM, 13, January 1966, p. 17.

8. Yershov, A.P. The ALPHA Automatic Programming System, New York:
Academic Press, 1971.

9. Prosser, R.T. "Application of Boolean Matrices to the Analysis
of Flow Diagrams," Proceedings of the Eastern Joint Computer
Conference, 1959, p. 133.

10. Cocke, John and J.T. Schwartz. ProgrammincLanguagesand,Thgiﬁ
Compilers, 2nd Revised Version, Courant Institute of Mathematical
Sciences, New York University, 1969.

11. Allen, Frances E. "Control Flow Analysis," ACM SIGPLAN Notices,
5, July, 1970, p. 1. . - .

12. Allen, Frances E. "Program Optimization," Annual Review in
Automatic Programming, Vol. V, 1965, p. 239,

13. Lowery, Edward S. and C.W. Medlock. "Object Code Optimization,”
CACM, 12, January 1969, p. 13.

14. Mendicino, Samuel F., et.al. "mhe LRLTRAN Compiler," CACM, 11,
November 1968, p. 747.

BEST COPY AVAILABLE

The following is & listing of Institute Papers which are still in
supply. Copies may be obtained from the Secretary of the Institute
Paper and Reprint Series, Krannert Graduate School of Industrial
Administration, Purdue University, West lafayette, Indiana 47907.

(When requesting copies, please specify paper nunber.)

Paper

No. Title and Author(s)

83 A CIASS OF UTILITY FUNCTIONS ADMITTING TYRNI'S HOMOGENEOUS
SAVING FUNCTION, Peter Jason Kalmen.

101 CIASSIFICATION OF INVESTMENT SECURITIES USING MULTIPLE
DISCRIMANANT ANALYSIS, Keith V. Smith.

123 A NOTE ON KONDRATIEFF CYCIES IN PRIWAR JAPAN, Charles R. Keen.

138 BOREDOM VS. COGNITIVE REAPPRAISAL IN THE DEVELOPMENT OF
COOFERATIVE STRATEGY, Marc Pilisuk, Paul Skolnick, Kenneth
Thomas andé Reuben Chapman.

1k ON IMPLICATIONS OF PRODUCTIVITY COEFFICIENTS AND EMPIRICAL
RATIOS, Harry Schimmier,

7 DEPTH, CENTRALITY AND TOIERANCE IN COGNITIVE CONSISTENCY,
Marc Pilisuk.

148 THE GENERAL INCONGRUITY ADAFTATION IEVEL (GIAL) KYPOTHESIS~-
TT. INCONGRUITY MOTIVATION TO AFFECT, COGNITION, AND ACTIVATION-
AROUSAL THEORY, Michael J. Driver and Siegfried Streufert.

150 PORTFOLIO REVISION, Keith V. Saith,

154 HEROES AND HOPIESSNESS IN A TOTAL INSTITUTION: ANOMIE THEORY
APPLIED TO A COLIECTIVE DISTURBANCE, Robert Perrucci.

155 REGTONAL ALIOCATION OF INVESTMENT: A FURTHER ANALYSIS,
Akirs Takayama.

158 O CIASSICAL MONETARY MODELS, Cliff Lloyd.

161 THE PURCHASING POWER FARITY THEORY: IN DEFENSE OF GUSTAV
CASSEL AS A MODERN THEORIST, James M. Holmes.

162 HOW CHARLIE ESTIMATES RUN-TIME, John M. Dutton and William H.
Starbuck.

163 FER CAPITAL CONSUMPTION AND GROWTH: A FURTHER ANALYSIS,
Akiia Iaj‘m ymﬁﬁ []

164 THE PROBABILITY OF A CYCLICAL MAJORITY, Frank De Meyer and

Charles R. Plott.

38

-l -

Title and Author(s)

THE CIASSROOM ECONOMY RUIES, RESULI'S, REFIECTIONS, John A.
Carlson.

AN ACTIVITY MODEL OF THE FIRM UNDER KISK, Carl R. Adams.

TAXES AND SHARE VALUATION IN COMPETITIVE MARKETS, Vernon L.
Smith.

FROGRAMMING, PARETO OPTIMUM AND THE EXISTENCE OF COMPETITIVE
EQUIIIBRIA, Akira Takayams and Mohamed El-Hodiri,

ON THE STRUCTURE OF OPTIMAL GROWTH PROBLEM, Akira Takayama.

A NEW APPFROACH TO DISCRETE MATHEMATICAL PROGRAMMING, G. W.
Graves and Andrew B. Whinston.

EXFERIMENTING WITH THE ARMS RACE, Marc Pilisuk and Paul Skolnick.
REGIONAL ALLOCATION (F INVESTMENT: CORREGENDUM, Akire Takaysma.

A SUGGESTE]D NEW MONETARY SYSTEM: THE GOLD VAILE STANDARD,
Robert V. Horton.

MULTI-COMMODITY NETWORK FLOWS WITH MULTIPIE SOURCES AND SINKS,
B. Rothchild and Ardrew Whinston,

OPTIMAL DISPOSAL POLICIES, Carl Adams.

SOME FORMUIAS ENCOUNTERED IN THE DEDUCTIVE ANALYSIS OF THIRD-
ORDER AUTOGRESSION FROCESS, R. L. Basmann and R. J. Rohr.

A CONVERGENT PARETO-SATISFACTORY NON-TATONNEMENT ADJUSTMENT

FPROCESS FOR A CIASS OF UNSEIFISH EXCHANGE ENVIRCNMENTS,
John 0. Ledyard.

ON A "CONCAVE" CONTRACT CURVE, Akira Talkayama.

THE EFFECTS OF FISCAL AND MONETARY POLICIES UNDER !‘IEXIBIE
AND FIXED EXCHANGE RATES, Akira Tekayama.

A MATCHING THEOREM FOR GRAFPHS, D. Kleitman, A. Martin-lof,
B. Rothchild and A. Whinston.

GENERALIZED OPINION IEFADERSHIP IN CONSUMER FPRODUCTS: SOME
PRELIMINARY FINDINGS, Charles W. King and John 0. Swmmers.

THE FIRM A8 AN AUTOMATION - I., Edwaxrd Ames.

SECOND-BEST SOLUTIONS, PEAK-LOADS AND MARGINAL COST FRICE
POLICIES FOR PUBLIC UTTILITIES, Robert A. Meyer, Jv,

EQUIPMENT REPIACEMENT UNDER UNCERTAINTY, Robert A, Meyer, Jr.

39

I -3~ BEST COPY AVAILABLE

Paper
No. ... 4%le and Author(s)

233 ECONOMIC EFFECTS OF UNIFOFM CONSUMER CREDIT CODE: A COMMENT,

234 OPTIMAL ADVERTISING EXPENDITURE IMPLICATIONS OF A SIMULTANEQUS-
EQUATION REGRESSION ANALYSIS, leonard J. Parsons and Frank M.
Bass.,

237 OPPOSITION (F PREFERENCES AND THE THEORY OF PUBRLIC GOODS,
Robert A. Meyer, Jr.

238 THE TAXATION OI" RESTRICTFED STOCK COMPEMSATION PIANS, G. W.
Hettenhouse and Wilbur G. lewellen.

239 DECOMPOSABIE REGRESSION MODELS IN THE ANALYSIS (OF MARKET
POTENTIALS, Frank M. Bass.

241 OPPORTUNTTY COSTS AND MODEIS OF SCHOOLING IN THE NINETEENTH
CENTURY, Iewis Solmon.

242 ESTIMATING FREQUENCY YUNCTIONS FROM LIMITED DATA, Keith C.
Brown.

246 ON OPTIMAL CAPITAL ACCUMUIATION IN THE PASINETTI MODEL OF
GROWTH, S. C. Hu.

250 MONEY, INTEREST AND POLICY, P. H. Hendershctt and George
Ho_rwich.

251 ON THE FEAK-IOAD FROBIEM, Akira Takayama.

253 A NOTE ON TECHNICAL FROGRESS, INVESTMENT, AND OPTIMAL GROWTH,
Sheng Cheng Hu.

254 MANUFACTURERS' SAIES AND INVENTORY ANTIC.™-ALTONS: THE OBE
COMPUTATIONAL PROCEDURES, John A. Carlson.

256 O ALCORTTHMS FOR INTEGER OPTIMIZATION, Edna Loehman,

© Tuan Fh, Nghiem and Andrew Whinston.

260 AGE-DEPENDENT UTILLTY IN THE LIFETIME ALLOCATION FROBIEM,
Kenneth Avio.

261 AFFECTIVE AND VAIUATIONAL CONSEQURNCES OF SELF ~PERCEIVED

UNIQUENESS DEPRIVATION: I. HYPOTHESES AND METHODOLOGICAL
PRESCRIPTTONS, Howard Fromkin,

262 AFFECTIVE AND VALUATIONAL CONSEQUENCES OF 8ET¥ -PERCEIVED
UNIQUERESS DEPRIVATION: II., EXFERIME RTALLY AROUSED FEELINGS
OF SEIF TEICEIVED SIMILARITY AS AN UNDESIRABIE AFFECTIVE STATE,
' 40

Paper

KNo. Title gnd Author(s)

263 AFFECTIVE ANV VAIUATIONAL CONSEQUENCES (F SEIF-PERCEIVED
UNIQUENESS DEPRIVATION: IXII. THE EFFECTS OF EXPERIMENTALLY
AROUSED FEELINGS OF SEIF PERCEIVED SIMIIARITY UPON VALUATION
O UNAVAIIARIE AND NOVEL EXPERIENCES, Howard Fromkin,

264 AIR POLIUTION AND HOUSINC: SOME FINDINGS, Robert J. Anderson,
Jr., and Thomas D. Crocker,

265 APPLICATION OF REGRESSION MODEIS IN MARKETING: TESTING VERSUS
FORECASTING, Frank M. Bass.

267 A LINEAR FROGRAMMING AFFROACH TO AIRPORT CONGESTION, Donald
W. Kiefer.

268 ON PARETO OPIIMA AND COMPETITIVE EQUILIBRIA, PART I. REIATION-
SHIP AMONG EQUILTBRIA AND OPTIMA, James C. Moore.

269 ON- PARETO OPTIMA AND COMFETITIVE EQUILIBRIA, PART II. THE
EXISTENCE OF EQUILTBRIA AND OFTIMA, James C. Moore.

271 A COMPARISON OF THREE MULTI-PRODUCT, MULTI-FACILITY BATCH
SCHEDULING HEURISTICS, David R. Denzler. |

272 A REFRESENTATION OF INTEGER POINTS IN POLYHEDRAL CONE, Ph.
Tuan Nghiem.

273 LINE OF BUSINESS REPORTING - A METHODOIOGY FOR ESTIMATING
BENEFITS, Russell M. Barefield. -

274 MARKETING APPLICATIONS (F SEIF-DESIGNATED OCCUPATION SKILL
VARJABIES, E. A, Pessemier and D. J. Tigert.

275 THE FULL-EMPLOYMENT INTEREST RATE AND THE REUTRALIZED MOKEY
8T0CK, Patric H. Hendershott.

276 SOME APPLICATIONS OF THE CHANGE OF BASE TECHNIQUE IN INTEGER
FROGRAMMING, Ph. Tuan Nghiem.

277 A WELFARE FUNCTION USING "REIATIVE INTENSITY" (F PREFERENCE,
Frank DeMeyer and Charles R. Plott.

279 RACE AND COMIETENCE AS DETERMINANTS OF ACCEPTANCE OF NEW-
COMERS IN SUCCESS AND FAILURE WORK GROUPS, Howard L. Fromkin,
Richard J. Klimoski, and Michael F. Flanagan.

280 IEADERSHIP, POWER AND INFIUENCE, Donald C. Xing and Bernard. B,
Bass.

281 RECENT RESUIAS IN THE THEORY OF VOTING, Charles R. Plott.

282 DISAGGRECATION Of ANALYSIS OF VARIANCE FOR PAIRED COMPARISONS:

| AY APPLICATION TO A MARKETING EXPERIMENT, E. A. Pessemier and
': Q R. D. Teach. 41

283

28k

285

286

287

288

289

291

299

300

301

303

BEST COPY AVAILABLE

Title and Author(s)

MARKET RESPONSE TO D"NOVATION, FURTHER APPLICATIONS OF 'THE
BASS NEW PRODUCT GROWTH MODEL, John V. Nevers.

PROFESSIONALISM, UNIONISM, AND COLIECTIVE NEGOTTIATION:
TEACHER NEGOTTATIONS EXFERIENCE IN CALIFORNIA, James A. Craft.

A FREQUENCY DOMAIN TEST OF THE DISTURBANCE TERM IN LINEAR
REGRESSION MODELIS, Thomas F. Cargill and Robert A. Meyer,

EVAIUATING ALTERNATIVE PROPOSAIS AND SOURCES OF NEW INFORMATION,
Edgar A. Pessemier, '

A MUITIVARIATE REGRESSION ANALYSTS OF THE RESPONSES OF
COMIETING BRANDS TO ADVERTISING, Frank M. Bass and Neil E.
Beckwith. '

ASSESSING REGUIATCRY ALTERNATIVES FOR THE NATURAL GAS
PRODUCING INDUSTRY, Keith C. Brown.

TESTING AN ALAPTIVE INVENTORY CONTROL MGUEL, D. Clay Whybark.

THE IABOR ASSTGUMENT DECISION: AN APFLICATION OF WORK FLOW
STRUCTURE TFORMATION, Willism K. Holstein and William L.

Berry.

AN EFFICIENT BRANCH AND FOUND ALGORITHM FOR THE WAREHOUSE
IOCATION FROBIEM, Pasgheer M. Khumawala.

THE. INTERACTION OF GROUP SIZE AND TASK STRUCTURE IN AN
INDUSTRIAL ORGANIZATION, Robert C. Cummins and Donald C. King.

FROJECT AND PROGRAM DECISIONS IN RESKARCH AND DEVEIOFPMENT,
Edgar A. Pessemier end Normen R. Baker. :

SEGMENTING CONSUMER MARKETS WITH ACTIVITY AND ATTITUDE MEASURES,
Thomas Hustad snd Edgar Pessemier,

R & D MANAGERS' CHOICES CF DEVELOPMENT POLICIES IN SIMUIATED
R & D ENVIRONMENTS, Herbert Moskowitz.

" DILUTION AND COUNTER-DILUTION IN REPORTING FOR DEFERRED

EQUITY, Charles A. Tritschler.

A METHODOLOGY FOR THE DESIGN AND OPTIMIZATION OF INFORMATION
FROCESSING SYSTEMS, J. F. Nunamaker, Jr.

OR PRODUCTTION FUNCTIONS AND EIASTICITY OF SUBSTITUTION,
K. R. Xadiyala.

AN EXPERTMENTAL INVESTIGATION OF DECISION MAXING IN A
SIMUTATED RESDARCH AND DEVELOPMENT ENVIROMMENT, Hexrbert
Moskowitz.

Paper
No. Title and Author(s)
305 A NOTE ON MONEY AND GROWTH, Akira Takayema.
307 AN EXPERIMENTAT STUDY OF REIATIONSHIPS BEIWEEN ATTITUDES,
BRAND PREFERENCE AND CHOICE, Frank M. Bass, Edgar A. Peuemier,
and Donald R. Iehmann.,
309 WAGES AND HOURS AS SIGN]I‘ICAN"I.‘ ISSUES IN COLLECTIVE BARGAINING,
Paul V. Johnson.
311 AN EFFICIENT HEURISTIC AIGORITHM FOR THE WARKHOUSE LOCATION
FROBLEM, Basheer M. Khumawals.
312 REACTIONS TO IEADLERSHIP STYIE AS A FUNCTION OF PERSONALITY
VARIABIES, M. H. Rucker and D. C. King.
313 FIRE FIGHTER STRATEGY IN WAGE NEGOTIATICNS, James A. Craft.
31 TESTING DYSTRIBUTED IAG MODELS OF ADVERTISING EFFECT - AN
ANALYSIS COF DIETARY WEIGHT CONTROL FRODUCT DATA, Frank M,
Bass and Darrell G. Clarke.
316 AN EMPIRICAT INVESTICATION OF THE KELIABILITY AND STABILITY
OF SEIECTED ACTIVITY AND ATTITUDE MEASURES, Edgar Pessemier
end Albert Bruno.
317 BEHAVIOR OF THE FIRM UNDER REGUIATORY CONSTRAINT: CIARIFI-
CATIONS, Mohamed El-Hodiri and Akiiea Takayama.
320 DEPRECIATION POLICY AND THE BEFAVIOR OF CORPORATE PROFITS,
Russel] M. Barefield and Eugene E., Comiskey,
321 IABORATORY RESEARCH AND THE ORGANIZATION: GENERALIZING FROM
IAB T0 LIFE, Howard L. Fromkin and Thomss M. Ostrom.
322 10T SIZING PROCEDURES FOR NEQUIREMENTS PIANNING SYSTEMS: A
FRAMEWORK FOR ANALYSIS, William L. Berry.
326 PRIORITY SCHEDULING AND INVENTORY CONTROL IN JOB IOT MANUFACTURING
SYSTEMS, Willlem 1., Berry.
328 THE EXPECTED RATE OF INFIATION BEFORE AND AFTER 1966: A CRITIQUE
OF THE ANDERSEN-CARLSON EQUATION, Patric H. Hendershott.
330 ! FROBIEM IN IEAD-IAG DETECTION, Robert A. Meyer, Jy.
327 THE SMOOTHING HYPOTHESIS: AN ALTERNATIVE TEST, Russell M.
: Barefield and Eugene £, Comiskey,
333 CONSERVATISM IN GROUP INFORMATION FROCESSING BEHAVIOR UNDER

VARYING MANAGEMEI™ INMPORMATION SYSTEMS, Herbert Moskowitz,

43

e .. — - Gk Al ae

Paper

No.

33k

336

339

340

341

342

343

3u5

347

348

349

350

351

352

353

BEST COFY AVAILABLE

Title and Author(s)

FPRIMACY EFFECTS IN IMFORMATION PROCESSING BEHAVIOR - THE
INDIVIDUAL VERSUS THE GROUP, Herbert Moskowitz.

VEHICIE ROUTING FROM CENTRAL FACILITIES. Brian F. 0'Neil and
D. Clay Whybark.

UNEXPIAINED VARIANCE IN STUDIES OF CONSUMER BEHAVIOR, Frank
M. Bass,

THE FROLUCTION FUNCTION AS A MODEL OF THE REQUIREMENTS OF THE
INFANTRY SHRGEANT’S ROLE, Richard C. Roistecher and John J.
Sherwood.

SEIECTING EXPONENTTAL SMOOTHING MODEL PARAMETERS: AN AFPLI-
CATION OF PATTERN SEARCH, William L. Berry and I‘riedhelm W.
Bliemel.

AN INTEGRATED EXAMINATION OF MEDIA APPROACHES TO MARKET
SEGMENTATION, Albert Bruno, Thomas Hustad and Edgar Pessemier.

TIABORATORY EXPERIMENTALION, Howard L. Fromkin and Siegfried
Streufert,

REVERSAYL CF THE ATTITUDE SIMIIARITY-ATTRACTION EFFECT BY
UNIQUENESS DEIRIVATION, Howard L. Fromkin, Robert L. Dipboye
and Marilyn Prle.,

WILIL THE REAL CONSUMER-ACTIVIST PIEAST STAND UP, Thomas P.
KHustad and Edgar A. Pessemier.,

MULTI-ATTRIBUTE MODELS FOR PREDICTING INDIVIDUAL PREFERENCE
AXD CHOICE, Edgar A. Pessemier.

THE VAIUE OF INFORMATION IN AGGREGATE FRODUCTION PIANNING -
A BEHAVIORAL EXPERIMENT, Hexbert Moskowitz.

A MEASUREMENT AND COMPOSITION MODEL FOR INDIVIDUAL CHOICE
AMONG SOCTAL AITERNATIVES, Edgar A. Pessemier,

THE NWOCIASSICAL THEORY OF INVESTMENT AND ADJUSTMENT COSTS,
Akira Taksyems..

A SURVEY OF FACIIITY IOCATION METHODS, D. Clay Whybark and
Basheer M. Xhumawala.

THE LOCUS AND BASIS OF INFIUENCE ON ORGANIZATION DECISIONS,
Martin Patchen.

A PIE.S. FOR A FOURTH TRADITION - AND FOR ECONOMICS, Robert V.
Hortot

BEARLY APPLICATIONS OF SFECTRAL ME’.EFIOﬁS TO ECONOMIC TIME SERIES,
Thomas F. Cavgill.)
44

Paper

No.

354

355

356
357

358

359

360

361

362

363

36U

365

366

307

368

369

370

3N

Title and Author(s)

STUDENT APPLICATIONS IN A PRINCIPIES COURSE (F ECONOMIC ANALYSIS
TO SEIF-DINCOVERED ITEMS, Robert V. Horton.

BRANCH AND BOUND AXGORITHMS FOR IOCATING EMERGENCY SERVICE
FACILITIES, Basheer M. Khumawala.

BEHAVIQRAL SCIENCES IABORATORIES DESIGN FACTORS, Benjamin L. Mays.

AN EFFICIENT AIGORITHM FOR CENTRAL FACILITIES LOCATION, Basheer M.
Khumawala . o

AN EXPERIMENTAL STUDY OF ATTITUDE CHANGE, ADVERTISING, and USAGE
IN NEW PRODUCT INTRODUCTION, James L. Ginter and Frank M. Bass.

DENTIAL OF SELF-HELP REPOSSESSION: AN ECONOMIC ANALYSIS,
Robert W. Johnson.

WAREHOUSE LOCATION WITH CONCAVE COSTS, Basheer M. Khumawale,
and David L. Kelly.

LINFAR AND NONLINEAR ESTIMATION OF PFRODUCTION FUNCTIONS,
R. A. Meyer and K. R. Kediyalas.

QUAST-CONCAVE MINIMIZATION SUBJECT TO TINEAR CONSTRAINTS,
Antal Ma,jthay and Andrew Whinston.

PRODUCTION FUNCTION THEORY AND THE OPTIMAL DESIGN OF WASTE
TREATMENT FACIIITIEE, Jemes R. Marsden, David E. Pingry and
Andrew Whinston.

A REGTIONAL PIANNING MODEL FOR WATER QUALITY CONTROL, David E.
Pingry and Andrew Whinston.

ISSUES TN MARKETING'S USE OF MULTI-ATTRIBUTE ATTITUDE MODELS,
William L. Wilkie and Edgar A. Pessemier.

A SOCTIAI PSYCHOIOGICAL ANALYSIS OF ORGANIZATIONAIL INTEGRATION,
Howard L. Fromkin.

ECONOMICS Of WASTEWATER TREATMENT: THE ROLE OF REGRESSION,

J. R. Marsden, D, E. Pingry and A. Whinston.

THE ROLE OF MODELS 7N NEW FRODUCT PIANNING, Edgar A. Pessemier
and H. Paul Root.

A NOTE ON PREFERENCE OKDERINGS WHICH ARE CONVEX TO THE ORIGIN,
James C. Moore,

AXIOMATIC CHARACTERIZATIONS CF CONSUMER PREFERENCES AND THE
STRUCTURE OF THE CONSUMPTION SET, James C. Moore,

BUSINESS POLICY OR STRATEGIC MANAGEMENT: A BRQADER VIEW FOR
AN EMERGING DISCIPLINE, Dan E Schendel and Kenneth J. Hatten,

45

Paper

No.

372

373

37h

375

376
377

378

379

380

381

382

383

384
385

38

387

388

BEST COPY AvalLApL

Title and Author(s)

MULTT-ATTRIBUTE CHOICE THEORY - A REVIEW AND ANALYSIS, Edgar A.
Pegsemier and William L. Wilkie, ,

INFORMATION AND DECISION SYSTEMS FOR FRODUCTION PIANNING: A

NEED FOR AN INTER-DISCIPLINARY PERSFECTIVE, Herbert Moskowitz
and Jeffrey G. Millex,

ACCOUNTING FOR THE MAN/INFORMATION TNTERFACE IN MANAGEMENT
INFORMATION SYSTEMS, Herbert Moskowitz and Richard O. Muson.

A COMPETITIVE PARITY APPROACH TO COMFETITION IN A DYNAMIC MARKET
MODEL, Rendall L. Schultz.

BEHAVIORAL MODEL BUIIDING, Randall L. Schultz and Dennis P. Slevin,

THE HALO EFFECT AND REIATED ISSUES IN MULTI~ATTRIBUTE ATTITUDE
MODELS - AN EXMRIMENT, Willism L. Wilkie and John M. McCann.

AN IMPROVED METHOD FOR SOLVING THE SEGREGATED STORAGE FROBLEM,
Basheer M. Khumawnla and David G. Dannenbring.

ON THE PROBABILITY OF WINNING IN COMFETITIVE BIDDING THEORY,
Keith C. Biouwn.

COST ALLOCATION FOR RIVER BASIN PIANNING MODELS, E. Loehman,
D. Pingry and A. Wainston.

FORECASTING DEMAND FOR MEDICAL SUPPLY ITEMS USING EXPOKENTIAL
AND ADAPTIVE SMOOTHING MODELS, Everett E. Adam, Jr., Willian L.
Berry and D. Clay Whybark.

SETTING ADVERTISING APPROPRIATIONS: DECISION MODELS AND
ECONOMETRIC RESEARCH, lLeonard J. Parsons and Randall L. Schultz.

ON THE OPTIMAIL GROWTH OF THE IWO SECIOR ECONOMY, John Z.
Drebicki and Akira Talayems.

UNCERTATN COSTS T COMFETITIVE BIDDING, Keith C. Brown.
EFFECTS OF THE NUMECR AND TYFE OF ATTRIBUTES INCLUDED IN AN

ATTTTUDE MODEL: MOX: IS NOT BETTER, William L. Wilkie and Rolf
P. Weinrecich.

PARETO OPTIMAL ALIOCATIONS AS COMPETITIVE EQUILIBRIA, James C.
Moore, .

A PIANNING AND COST ALIOCATION FROCEDURE FOR COMPUTER SYBTEM
MANAGEMENT, J. F. Nunamaker and A. Whinston.

PROFESSOR DEREEU'S "MARKET EQUILIBRIUM" THECREM: AN EXPO SITORY
NOTE, Jemes C. Moore.

46

390

389

Title and Author(s)

THE ASSIGNMENT OF MEN TO MACHINES: AN APPLICATION OF BRANCH
AND BOUND, Jeffrey G. Miller and William L. Berry.

THE IMPACT OF HIERARCHY AND GROUP STRUCTURE ON INFORMATION
PROCESSING IN DECISION MAKING: APPLICATION OF A NETWORKS
SYSTEMS APFROACH, David L. Ford, Jr. '

